Lysophospholipids induce the nucleation and extension of beta2-microglobulin-related amyloid fibrils at a neutral pH.
نویسندگان
چکیده
BACKGROUND In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Low concentrations of sodium dodecyl sulfate induce partial unfolding of beta2-m to an amyloidogenic conformer and subsequent amyloid fibril formation in vitro, but the biological molecules that induce them under near-physiological conditions have not been determined. METHODS We investigated the effect of some lysophospholipids on the nucleation, extension and stabilization of Abeta2M amyloid fibrils at a neutral pH, using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy and electron microscopy. We also measured plasma concentrations of lysophospholipids in 103 haemodialysis patients and 14 healthy subjects and examined the effect of uraemic and normal plasmas on the stabilization of Abeta2M amyloid fibrils at a neutral pH. RESULTS Some lysophospholipids, especially lysophosphatidic acid (LPA), induced not only the extension of Abeta2M amyloid fibrils but also the formation of Abeta2M amyloid fibrils from the beta2-m monomer at a neutral pH, by partially unfolding the compact structure of beta2-m to an amyloidogenic conformer as well as stabilizing the extended fibrils. Haemodialysis patients had significantly higher plasma concentrations of LPA than healthy subjects. Furthermore, uraemic plasmas with the highest ranking LPA concentrations stabilized Abeta2M amyloid fibrils significantly more potently than normal plasmas. On the other hand, simple addition of LPA to normal plasma did not enhance the fibril stabilizing activity. CONCLUSIONS These results suggest a possible role of lysophospholipids in the development of Abeta2M amyloidosis.
منابع مشابه
Lysophospholipids induce the nucleation and extension of β2-microglobulin-related amyloid fibrils at a neutral pH
Background. In β2-microglobulin-related (Aβ2M) amyloidosis, partial unfolding of β2-microglobulin (β2-m) is believed to be prerequisite to its assembly into Aβ2M amyloid fibrils in vivo. Low concentrations of sodium dodecyl sulfate induce partial unfolding of β2-m to an amyloidogenic conformer and subsequent amyloid fibril formation in vitro, but the biological molecules that induce them under ...
متن کاملGlycosaminoglycans enhance the trifluoroethanol-induced extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH.
beta(2)-Microglobulin-related (A beta 2M) amyloidosis is a frequent and serious complication in patients on long-term dialysis, and beta(2)-microglobulin is a major structural component of A beta 2M amyloid fibrils. Several biologic molecules inhibiting the depolymerization of A beta 2M amyloid fibrils at a neutral pH were found recently. The effect of trifluoroethanol and glycosaminoglycans (G...
متن کاملThe amyloid fibrils of the constant domain of immunoglobulin light chain.
Light chain-associated (AL) amyloidosis is characterized by dominant fibril deposition of the variable domain (VL) of an immunoglobulin light chain, and thus its constant domain (CL) has been considered not to be amyloidogenic. We examined the in vitro fibril formation of the isolated CL in comparison with beta2-microglobulin (beta2-m), an immunoglobulin domain-like amyloidogenic protein respon...
متن کاملbeta2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity.
BACKGROUND In dialysis-related amyloidosis, beta2-microglobulin accumulates as amyloid fibrils preferentially around bones and tendons provoking osteoarthritis. In addition to the pathologic role played by the amyloid fibrils, it can be speculated that a pathogenic role is also played by the high concentrations of soluble beta2-microglobulin because it is toxic for certain cell lines like HL60 ...
متن کاملCompeting pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid.
Despite its importance in biological phenomena, a comprehensive understanding of the mechanism of amyloid formation remains elusive. Here, we use atomic force microscopy to map the formation of beta2-microglobulin amyloid fibrils with distinct morphologies and persistence lengths, when protein concentration, pH and ionic strength are varied. Using the resulting state-diagrams, we demonstrate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2008